Las antenas son objetos sencillos en apariencia, pero la teoría subyacente, basada en las ecuaciones de Maxwell para el electromagnetismo, es casi impenetrable. Por esta razón los diseñadores de antenas se ven obligados a proceder por tanteos, por prueba y error. Incluso los receptores técnicamente más avanzados dependen con frecuencia de un simple hilo colgante, que no se diferencia en nada de los utilizados hace un siglo por G. Marconi en sus primeras pruebas de transmisión por radio.
Los fractales mejoran el diseño de antenas básicamente por dos motivos. En primer lugar, pueden aumentar el rendimiento de las antenas compuestas. Muchas antenas que en apariencia parecen constituir una sola unidad –gran parte de las antenas de radar, entre ellas- están en realidad compuestas por una formación de hasta un millar de pequeñas antenas. Su disposición suele ser o perfectamente regular o, por el contrario, aleatoria. Dwight Jaggard y Douglas Werner han descubierto que una distribución fractal puede combinar la robustez de los sistemas aleatoriamente dispuestos con el rendimiento de los regulares, todo ello utilizando la cuarta parte de elementos. Los fractales pueden ofrecer desorden a pequeña escala y orden a gran escala.
En segundo término, la forma fractal puede ser beneficiosa incluso para antenas aisladas. Nathan Cohen y un equipo de ingenieros de la Universidad Politécnica de Cataluña, han experimentado, de forma independiente, con hilos doblados siguiendo la forma de las curvas de Koch, o de los triángulos de Sierpinski. Al replegar así la antena se consigue no sólo alojar la misma longitud en un espacio seis veces menor, sino que su forma dentada genera capacitancia e inductancia adicionales, haciendo innecesarios elementos externos para su sintonización o para aumentar la anchura de la banda de frecuencias que pueda recibir.
Cohen, que fundó Fractal Antena Systems en 1995, trabaja en la actualidad con T&M Antenas, fabricante de antenas para los teléfonos móviles de Motorola. Uno de los ingenieros de T&M afirma que el rendimiento de las antenas fractales es un 25 por ciento mayor que el de las habituales antenas romas, revestidas de goma, con que van equipadas muchos teléfonos móviles o inalámbricos. Amén de ser más baratas de fabricar, operan en múltiples bandas, lo que permite incorporar un receptor GPS al teléfono, al tiempo que la antena puede quedar oculta en el interior del aparato.
Cohen y su colega Robert Honfeld han demostrado matemáticamente que para que una antena ofrezca un comportamiento uniforme en todas las frecuencias ha de satisfacer dos criterios. Primero, ha de presentar simetría respecto a un punto. Y segundo, ha de ser autosemejante, ofrecer básicamente el mismo aspecto a todas las escalas.
No hay comentarios:
Publicar un comentario